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Abstract--Boundary-layer analysis is performed for mixed convection about a horizontal flat plate in a 
saturated porous medium with aiding external flows, where the governing parameter is found to be 
Ra/(RePr) 3/2. Similarity solutions are obtained for (i) horizontal flat plates at zero angle of attack with 
constant heat flux and (ii) stagnation point flows about horizontal fiat plates with wall temperature 
varying as T,,.a x 2. Temperature and velocity profiles for these two cases at selected values of Ra/(RePr) 3/2 
are presented. The heat-transfer rate is shown to be asymptotically approaching the lbrced and free 
convection values as the value of Ra/(RePr) 3/2 approaches the limits of 0 and ~_. The criteria for pure 

and mixed convection about horizontal flat plates in porous media are established. 

NOMENCLATURE 

A, constant defined in equation (6a); 
B, constant defined in equation (14b); 
C, specific heat of the convective fluid; 
f ,  dimensionless stream function defined by 

equation (16); 
Gr, local Grashof number, 

Gr =- g] T ~ -  T~ ]flKx/v2; 
g, acceleration due to gravity; 
h, local heat-transfer coefficient; 
K, permeability of the porous medium; 
k,,, thermal conductivity of the saturated 

porous medium; 
m, constant defined in equation (14b); 
n, porosity; 
Nu, local Nusselt number, Nu = hx/km; 
p, pressure; 
Pr, Prandtl number, Pr -- v/a; 
q, local heat-transfer rate; 
Ra, modified local Rayleigh number, 

Ra =- po~gflg]Tw- T®[x/lac~; 
Re, local Reynolds number, Re =- U~ x/v; 
T, temperature; 
U~, Darcy's velocity in x-direction outside the 

boundary layer; 
u, Darcy's velocity in x-direction; 
v, Darcy's velocity in y-direction; 
x, coordinate in the horizontal direction; 
y, coordinate in the vertical direction. 

Greek symbols 

c¢ equivalent thermal diffusivity; 
r,  coefficient of thermal expansion; 
@, thermal boundary-layer thickness; 
~/, dimensionless similarity variable defined 

in equation (15); 
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~/r, value of r/ at the edge of the thermal 
boundary layer; 

0, dimensionless temperature defined by 
equation (17); 

2, constant defined in equation (6a); 
p, viscosity of convective fluid; 
v, kinematic viscosity of the convective fluid; 
p, density of convective fluid; 
~b, velocity potential; 
~k, stream function. 

Subscripts 

0% condition at infinity; 
f,  convective fluid; 
s, unsaturated porous medium; 
w, condition at the wall. 

INTRODUCTION 

THE STUDY of mixed (combined free and forced) con- 
vection boundary-layer flows in a viscous fluid has 
received much attention in the past two decades (see 
Gebhart [1] for a review of the literature). Most of the 
analyses for mixed convection about inclined surfaces 
neglect the component of the buoyancy force normal 
to the surface. This approximation will break down 
completely when the inclined surface becomes horiz- 
ontal where the buoyancy force is acting perpendicular 
to the surface. Thus, mixed convection about horizon- 
tal surfaces have been treated separately from those of 
inclined surfaces. Although similarity solutions have 
been obtained for mixed convection about inclined 
surfaces in a viscous fluid (Sparrow et al. [2]), they do 
not exist for mixed convection about horizontal 
surfaces where series solutions have been obtained 
instead [3-5]. 

The analogous problems of mixed convection in a 
porous medium have important applications in 
geothermal reservoirs where pressure gradients may be 
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generated either by artificial withdrawal or injection 
of fluids or by natural recharge or discharge of meteoric 
water. Recently, a number of papers [6-11] have 
appeared on the study of mixed convection in a porous 
medium. In particular, the problem of mixed convec- 
tion about inclined surfaces is considered by Cheng 
[1 1] who neglects the normal component of buoyancy 
force, and obtains similarity solutions for the special 
case where the free stream velocity and wall tempera- 
ture vary according to the same power function of 
distance. 

In this paper, we shall study mixed convection about 
horizontal surfaces embedded in a porous medium 
where gravitational force acts perpendicular to the sur- 
face, Similarity solutions are obtained for aiding flows 
over a horizontal fiat plate with constant heat flux, 
and aiding stagnation point flows about a horizontal 
flat plate with wall temperature varying as x", The 
governing parameter for mixed convection about hori- 
zontal surfaces in a porous medium is found to be 
Ra/(RePr) 3/2 as opposed to Gr/Re for mixed convec- 
tion about inclined surfaces [11]. The criteria for pure 
and mixed convection about horizontal surfaces in 
porous media are established. 

ANALYSIS 

Consider the combined free and forced convection 
in a porous medium adjacent to a horizontal heated 
or cooled surface with assisting external flow U~.(x) 
as shown in Fig. 1. In the mathematical tormulation 
of the problem, we shall assume that (i) the convective 
fluid and the porous medium are everywhere in local 
thermodynamic equilibrium, (ii) the temperature of the 
fluid is everywhere below boiling point, (iii) properties 
of the fluid and the porous medium such as viscosity, 
thermal conductivity, specific heats, thermal expansion 
coefficient, and permeability are constant, and (iv) the 
Bousinesq approximation can be applied. Under these 
assumptions the governing equations are given by 

~u 3v 
- - +  ~ = O, (1) 
~:x dy 

K ?p 
u . . . . . .  (2) 

I~ ~ x "  

c'~T gT /'~32 T c32T'~ 
,, = + ,  . . . . .  ~ , ~ - +  (4) 

i> = p~, [ 1 - f l ( T -  T.)], (5) 
where the " + "  sign in equation (3) refers to the case 
of a heated impermeable surface facing upward [Figs. 
l(a) and (b)] while the " - "  sign refers to the case of a 
cooled impermeable surface facing downward [Figs. 
l(c) and (d)]. In equations (1)-(5), u and v are the 
Darcy's velocities in the horizontal and vertical direc- 
tions; p, ~ and fl are the density, viscosity, and the 
thermal expansion coefficient of the convecting fluid; 
K is the permeability of the porous medium; 
o~ =-k,,,/(p~C)s is the equivalent thermal diffusivity 

CtU-NCi 

, J , \  

, % , ' r ®  
b) lb) 

[w < Teo 

Y i / 

(C) (d) 

[:uG. I. Coordinate systems. 

with (p~ C)s denoting the product of density and 
specific heat of the convecting fluid, and k m the thermal 
conductivity of the saturated porous medium given by 
k,. = ( l - n ) k ~ + n k  s where n is the porosity of the 
medium, k, and k /a re  the thermal conductivity of the 
solid and the convecting fluid respectively; T, p and g 
are the temperature, pressure and the gravitational 
acceleration. The subscript "oo" refers to the condition 
at infinity. 

The boundary conditions for the problem are 

y = O ,  T,~=T~+_Ax x, c=O,  (6a, b) 

y ~  ~ ,  T = T~,, u = L.'~(x), (7a, b) 

where A > 0 and the " + "  and " - "  signs in equation 
(6a) are for a heated impermeable surface facing upward 
and for a cooled impermeable surface facing downward. 
Equation (6a) shows that the prescribed wall tempera- 
ture is a power function of distance from the origin. 

We now assume that (i) convection takes place in 
a thin layer adjacent to the heated or cooled surface, 
and (ii) outside this layer density of the fluid can be 
considered to be constant. Analogous to the classical 
boundary-layer theory, we shall separate the problem 
into two regions: the outer region where the fluid can 
be treated as incompressible and the inner region where 
density gradient exists and convection takes place. 
Thus, for the outer region, equations (2) and (3) can 
be written as 

u = - - -  and t, . . . . .  , (8) 
Ox ??' 

where ~b -= (K/#)(p+pgy) is the velocity potential. Sub- 
stituting equation (8) into equation t l), we have 

V205 = 0, (9a) 

which is the Laplace equation for the outer region. 
Eliminating 4~ from equation (8) and with the resulting 
equation in terms of stream function 0, we have 

VZ~ = 0, (10) 

where u = Otp/Sy and v = -(~O/c3x). From potenti',d 
flow theory, we know that the solution to equation 
(10) for flow over a horizontal surface, and stagnation 
point flow about a horizontal surface are 0 = By and 
O = Bxy which can be rewritten in a more compact 
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form as ~b = Bxmy (and consequently u = U~ = Bx m) 
with m = 0 and m = 1 for the two different external 
flow conditions. 

We now turn our attention to the inner region, i.e. 
the boundary-layer region adjacent to the heated or and 
cooled impermeable surface where density gradient 
exists. With boundary-layer approximations, equations 
(1)-(5) can be rewritten as [12] 

02~/ Kp~gf l  OT 
= + - -  , ( 1 1 )  

3y  2 -- p OX 

: T = ! ( 0 0  or or) 
Oy 2 ~\OyOx a x e "  (12) 

Boundary conditions in terms of ~, are 

o¢ 
y = O, T~ = To +_AxX, ~ = 0, (13a, b) 

a~ 
y -o  oo, T = T~, u =-~y = U~ = Bx m, (14a, b) 

where equation (14b) is the flow condition in the 
outer region with m = 0 for assisting flow over a 
horizontal flat plate at zero incident, and m = 1 for 
stagnation point flow about a horizontal impermeable 
surface. 

To seek similarity solutions to equations (11) and 
(12) with boundary conditions (13) and (14), we intro- 
duce the following dimensionless variables 

(Uo~x] ~n Y, 
= \ - -~ - - /  x (15) 

= (~U~o x)l/2f(q), (16) 

O(q) = ( T -  To~)/(T,- To). (17) 

In terms of new variables, it can be shown that the 
velocity components are given by and 

u = Uo~ f'(q), (18) 

v = ½ [(1 - m)r/f' - (1 + m)f], (19) 

and the governing equations (11) and (12) become 

:,,_ 

, l + m  
0" = 20f  - T fO', 

with boundary conditions given by 

n = 0 ,  0 = 1 ,  f = O ,  
q,~oo,  0 = 0 ,  f ' = l .  

(20) 

(21) 

(22a,b) 
(23a, b) 

It is apparent that equation (20)-(23) will be indepen- 
dent of x if the exponent of x in equation (20) 
vanishes, i.e. 

2 = (3m+1)/2 or m =(22-1)/3.  (24) 

Under this restricted condition, equation (20) and (21) 
in terms of m become 

Ra 
f "  = 2(RePr)3/2 [(3m+ 1)0 + (m-  1)q0'], (25) 

0" = ½[(3m + 1)Of' - (m + 1)f0'], (26) 

which can also be written in terms of 2 to give 

(RePr)3n 0 + q0' , 

895 

(27) 

RESULTS AND DISCUSSION 

Equations (25) and (26) or equations (27) and (28) 
with boundary conditions (22) and (23) are integrated 
numerically by means of the Runge-Kutta method 
with a systematic guessing of if(O) and f'(0) by the 
shooting technique. Numerical computations were 
carried out for aiding flows with the values of 
Ra/(RePr)  3;2 from 0 to 15. Results for 0(q) and f '(qJ, 
f o r 2 = l / 2 a n d m = 0 a s w e l l a s  f o r 2 = 2 a n d m = l  
are presented in Figs. 2 and 3. 

Of particular interest in geothermal applications are 
the heat-transfer rate and the thermal boundary-layer 
thickness. Consider first the local surface heat flux 
along the horizontal impermeable surface which is 
given by 

k faT )  / B x  "2 q-- - [-0'(0)], 133) 

0,, = 20 l + m  2 no'. (32) 

Equation (32) with equations (22a) and (23a) are the 
governing equation and boundary conditions for tem- 
perature distribution inside a thermal boundary layer 
of a forced flow in a porous medium. 

/2+I\ O, 

where 
p~of lK[Tw-  T~[x//#oc po~gflKA 

(RePr) 3 / 2 -  (Uo~x'13/2 pB " 

Equations (25) and (26) or equations (27) and (28) are 
the governing equations for mixed convection about 
horizontal impermeable surfaces in a porous medium 
where m = 0 and 2 = 1/2 correspond to mixed flows 
over a horizontal flat plate with Twc~(x) ~, while m = 1 
and 2 = 2 correspond to stagnation point flow with 
T,,~ x 2. 

It is worth noting that the governing parameter for 
mixed horizontal boundary-layer flows is Ra/(RePr) s/2, 
and that the limiting case of Ra/(RePr} 3/2 = 0 corre- 
sponds to forced boundary-layer flows. Let's examine 
the limiting case of Ra/(RePr) alE = 0 in some detail. 
For this special ease, equations (20)-(23) are indepen- 
dent of x for arbitrary values of m and 2. Furthermore, 
equation (20) can be integrated with the aid of equations 
(22b) and (23b) to give 

f ' = l  and f = r / .  (29a, b) 

Substituting equation (29) into equations (16), (18), (19) 
and (21) yields 

¢ = t~x-y, (30) 
u = U~ = Bx  m, v = - -Bxm- ly ,  (31a,b) 
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FIG. 2. Dimens ion less  t empera tu re  profiles for mixed convec t ion  with a id ing  external  f lows : la )  
fiat p la te  at zero angle  of a t t ack  wi th  cons tan t  heat  flux (m = 0 and ;. = 1/2), (b) s t agna t ion  

with T,,~ x 2 (m = 1 and ). = 2). 
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FIG. 3. Dimens ion less  veloci ty  profi les for mixed  convec t ion  wi th  a id ing  external  f lows: (a) hor izon ta l  
fiat plate  at zero angle  of a t t ack  wi th  cons tan t  heat  flux i m =  0 and 2 = 1/21, (hi s t agna t i on  point  flow 

with 71,.0~ x 2 (m = 1 and ). :~ 21, 

Tab le  1. Values of [ - 0 ' ( 0 ) ] , ) ' ( 0 )  and  ~?r for a id ing  flows 

m = 0 a n d , : . =  1/2 m =  1 a n d ; t  = 2 

Ra/(RePV) 32 - 0'(0) ./"(0) '17 - 0'(0) f'(0) U I 

0 0.8862 1.000 3.2 1.595 1.000 2.0 
0.6 1.028 1.474 2.9 1.863 1.578 /.9 
1.0 1.102 1.747 2.8 2.004 1.916 1,8 
2,0 1.249 2.348 2.6 2.29 l 2.666 t,7 
5,0 1.550 3.799 2.2 2.879 4.495 1.5 
8.0 1.76l 4.999 2.0 3,292 6.010 1,3 

15.0 2.113 7.345 1.7 3,982 8,980 1.2 
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FIG. 4. Heat-transfer results for mixed convection with 
aiding external flows: ia) horizontal fiat plate at zero angle 
of attack with constant heat flux (m = 0 and 2 = 1/2) and 

(b) stagnation point flow with Twc~x 2 (m = 1 and 2 = 2). 

where the values of [ -0 ' (0 ) ]  for m = 0 and m = 1 at 
selected values of Ra/(RePr) 3/2 are presented in Table 1. 
Equation (33) shows that local surface heat flux is con- 
stant for m = 0. Equating equation (33) to the definition 
of local heat transfer coefficient, i.e. q = h(Tw-T~), 
we have 

Nu 
(RePr)l/2 = [ - -  0 ' ( 0 ) 3 ,  (34) 

where Nu = hx/k m. Equation (34) for m = 0 and m = 1 
is plotted in Fig. 4 as a function of Ra/(RePr) 1/3. The 
limiting cases of pure free convection and pure forced 
convection can be shown as asymptotes in the same 
figure. According to equation (34) and Table l, the 
expressions for pure forced convection [where 
Ra,'(RePr) 3'2 = 0] are 

Nu 
(RePr)l/2 = 0•8862, for m = 0 and 2 = l/2, (35a) 

Nu 
1.595, for m = 1 and 2 = 2. (35b) 

(RePr) 1/2 

The corresponding expressions for pure free convection 
about a horizontal impermeable surface embedded in 
a porous medium are [12] 

Nu 
(Ra)~l 3 = 0.8164, for 2 = 1/2, 

Nu 
- -  = 1•571, for ;. = 2, (Ra) 1/3 

which can be rewritten as 

Nu [ Ra ]1/3 
- O.8164[iRe~r)3/2 [ , for ), = 1,/2, (36a) (RePr) 1'2 

Nu I Ra ]1!3 
= 1 . 5 7 1 i ( R ~ - , 3 / :  [ L  errs A , f o r 2 = 2 ,  (36b) (RePr) 1/2 

It is shown in Fig. 4 that equation (34) approaches the 
forced and free convection limits [given by equations 
(35) and (36) respectively] as the values of 
Ra/(RePr) 3/2 approach zero and infinity. The criteria 
for pure or mixed convection about a horizontal 
surface in a porous medium can be established if the 
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5% deviation rule [2] is applied• It follows that 

0 < Ra/(RePr) 3/2 < 0.16 forced convection 

0.16 < Ra/(RePr) 3/2 < 5 mixed convection 

15 < Ra/(RePr) 3/2 < 0 free convection. 

Consider next the expression for thermal boundary- 
layer thickness• If r/r is the value of q at the edge of 
the thermal boundary layer, i.e. where Off/) has a value 
of 0.01, we have, 

(~T t/T 

x = (RePr) 1/z' (37) 

where the values of ~tr for m = 0 and 2 = 1/2 as well 
as m = 1 and 2 = 2 at selected values of Ra/(RePr) 3/2 
are presented in Table 1. It is worth noting that for 
stagnation point flow (m = 1 and 2 = 2), equation (37) 
reduces to 6T = (o~/B)U2rlT which is independent of x. 
It will be of interest to show the values of(RePr)l/z6r/x 
in the free and forced convection limits. This is done 
in Fig. 5 where the free convection asymptotes are 

given by Cheng and Chang [12] 

5.0 
(RePr)l/26T/X = (2 = 1/2), (38a) 

Ra/(Re Pr) 3/2 

3.7 
(RePr)a/23r/x - (2 = 2). (38b) 

Ra/(RePr) 3/2 

o. 

0 5  
0.4 

0.3 

0.2 

OJ 
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h = l / 2  ~ m : O  

. . . . .  Free Convect ion Asymptote 
- - - - - F o r c e d  Convection Asymptote 

2 I i i i I I l [  [ [ I i i l t l [  I , i , i i i  
O. 0 3 0 4 0 f i  I 0  2 3 4 5 [ 0  2 0  3 0 ~  IOO 

Rr,/(Re pr~ ~2 

FIG. 5. Dimensionless boundary-layer thickness parameter 
for mixed convection about a horizontal flat plate. 

C O N C L U D I N G  R E M A R K S  

An analysis has been made for mixed convection in 
horizontal boundary layer flows in a saturated porous 
medium with aiding external flows {i.e. B > 0). It is 
found that the governing parameter for the problem 
is Ra/(RePr) 3/2 as opposed to Gr/Re which is the 
governing parameter for mixed convection about in- 
clined plates in a porous medium [11]. Similarity solu- 
tions have been obtained for (i) mixed convection 
about a horizontal flat plate at zero angle of attack 
with constant heat flux, and (ii) mixed convection in 
stagnation point flows about a horizontal flat plate 
with T,.~ x 2. It is also found that no similarity solution 
is possible for mixed convection in horizontal 
boundary-layer flows in a porous medium with oppos- 
ing external flows (i.e. B < 0). 
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SOLUTIONS EN SIMILITUDE DE LA CONVECTION M1XTE POUR DES SURFACES 
IMPERMEABLES HORIZONTALES DANS DES MILIEUX POREUX SATURES 

Resume--On conduit l'analyse de couche limite pour la convection mixte autour d'une plaque plane et 
horizontale dans un milieu poreux satur6 et avec des 6coulements externes favorables: on a trouve que 
le param6tre fondamental est Ra/(RePr) 3'2. Des solutions en similitude sont obtenues pour (l) des 
plaques planes horizontales '5. angle d'attaque nul et '~ flux de chaleur constant, pour (2) des ecoulements 
de point d'arr~t autour 'de plaques planes horizontales dont la temp6rature de surface varie proportion- 
nellement /~ x 2. Des profils de temp6rature et de vitesse sont pr+sent6s dans ces deux can pour des 
valeurs particuli6res de Ra/(RePr) 3/2. Le transfert thermique approche asymptotiquement celui de con- 
vection forc+e ou libre lorsque Ra/(RePr) 3/2 tend vers tes limites 0 ou ~,. On etablit les crit+res pour la 

convection forc6e ou mixte autour des plaques planes dans les milieux poreux. 

AEHNLICHKE1TSLOSUNGEN FISIR DIE GEMISCHTE K O N V E K T I O N  
IJBER EINER HORIZONTALEN,  UNDURCHL/~SSIGEN O B E R F L ~ C H E  

IN EINEM GES/~TTIGTEN PORI3SEN M E D I U M  

Zusammenfassung--Ftir die gemischte Konvektion tiber einer horizontalen, ebenen Platte in einem gesiit- 
tigten porSsen Medium mit zusgtzlichen, yon auBen aufgebrachten StrSmungen wird eine Grenzschicht- 
untersuchung durchgefiihrt. Als bestimmender Parameter ergibt sich Ra/(RePr) 3/2. AehnlichkeitslSsungen 
werden erhalten (1) f/Jr horizontale, l/ingsangestr6mte, ebene Platten mit konstanter Wblrmestromdichte 
und (2) ffir Staupunktstr6mungen, um horizontale, ebene Platten mit einer Wandtemperaturverteilung 
Tw ~ x 2. Zu beiden F/illen werden ffir ausgew~ihlte Werte von Ra/(RePr) 3/2 Temperatur- und Gesch- 
windigkeitsprofile angegeben. Ffir Ra/(RePr) 3/2 gegen 0 bzw. ~ n~ihert sich der W~irmefibergang 
asymptotisch den Werten ffir die erzwungene bzw. freie Konvektion. Es werden Kriterien f/Jr reine und 

gemischte Konvektion fiber horizontalen, ebenen Platten in por6sen Medien aufgestellt. 

ABTOMOJIEJ ' IbHblE  PEIIIEHI4/t  ]IJI t l  C3-1UHAH CMEIIIAHHOITI KOHBEKI~HH 
OT F O P H 3 O H T A J I b H b l X  HEHPOHHI-] tAEMbIX FIJIACTHH B H A C b l I H E H H b I X  

r l O P H C T b I X  C P E ~ A X  

AmloTaUXX- HpoBe~eHO ticcne~toBanHe norpaHrlsHoro cno~ nprl CMeIJ.IaHHO~ KOHBeKI~HH y FOpH- 
3OHTan~HOI~ nnocxofi nnacTHnbI B nacbIttteHHOfi nOpHCTO~t cpenc npH ~angqnH cnyTHoro BnetnHero 
TeRe~tHn, ;ann roToporo  orlpe/IeJ'mK)UlnM nannercn napaMeTp Ra/(RePr) a/z. FIosly~tema aHannTra- 
qecKae pemeHHn ~nn ropH3OHTanbHblX HJIOCKHX nnaCTHH npH HyneBOM yrae  aTaKn H HOCTOHHHOM 
no~iBo~e Tenna H /IYln 3acToi~IHbIX TetleHHl~ y ropH3OHTanbH~X rLVIOCKHX HYlaCTHH C TeMnCpaTypoi~ 
CTeHKH, H3MeH$1IOLI~eI~iCn KaK Tw ~ X  2. l-Ipe~cTaBneHbi TeMr[epaTypHble H cKopOCTHble npodpnnrl ~ns  
3Tnx /~yx  cny~laeB npn  BhI6paHHblX 3HaqeHH~lX Ra/(RePr) 3:z. FIoKa3aHO, qTO CKOpOCTb nepeHoca 
Tenna aCHMHTOTHqeCKH npn6nn~aeTcn r 3HaqeHH~IM npH CBO60/1HOITI H BblHyYxneHHOfl KOHBeKIIHH 
rio Mepe TOrO KaK Ra/(RePr) am CTpeMHTC~I K npe2IenaM 0 H exp. YCTaHOBneHbI lgpHTepHH BYI~I cnyqan 

~nCTO~ n cMemaHno~t KonBe~unn y FOpH3OHTanbH~,IX HnOCKHX HHaCTHH B FIOpHCTblX cpe~2ax. 


